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FOURIER ANALYSIS OF MULTIGRID METHODS 
FOR GENERAL SYSTEMS OF PDES 

PER LOTSTEDT AND BERTIL GUSTAFSSON 

ABSTRACT. Most iteration methods for solving boundary value problems can 
be viewed as approximations of a time-dependent differential equation. In this 
paper we show that the multigrid method has the effect of increasing the time- 
step for the smooth part of the solution leading back to an increase of the 
convergence rate. For the nonsmooth part the convergence is an effect of damp- 
ing. Fourier analysis is used to find the relation between the convergence rate 
for multigrid methods and singlegrid methods. The analysis is performed for 
general partial differential equations and an arbitrary number of grids. The dif- 
ference in the behavior of the iterations between first- and second-order equa- 
tions is discussed. The theoretical results are confirmed in simple numerical 
experiments. 

1. INTRODUCTION 

The convergence analysis of multigrid methods for solving numerical approx- 
imations to partial differential equations is usually based on the assumption that 
the problem is solved exactly on the coarsest grid. In this way high convergence 
rates are often predicted, at least for elliptic model problems. The situation is 
different for large-scale real-life problems, where the geometry and the structure 
of the grid is such that a grid coarse enough to permit exact solutions is never 
reached. Instead, the smoothing operator (for example Jacobi, Gauss-Seidel, 
conjugate gradient, Runge-Kutta iteration) applied on the finer grids is also 
used on the coarsest grid, and the number of grids is usually low, typically two, 
three or four. The convergence rates observed for this kind of computations are 
often lower than the ones predicted by too simplified model problems. 

The traditional way of performing convergence analysis is to estimate the 
magnitude of the eigenvalues of the iteration matrix M. For equations of 
simple structure, boundary conditions can sometimes be included, since the 
set of eigenvectors can be derived, which in turn permits the calculation of 
eigenvalues. However, the analysis is in most cases based on Fourier modes (see, 
for example, [1], [16], [18]), which means that the solutions are assumed to be 
periodic in space or that the domain is unbounded. If 4 is the wave number, h 
is the fine-grid stepsize, the differential equation has no lower-order terms, and 
M(h4) is the symbol of M, there is always one eigenvalue A(h4) of M(h4) 
with A(O) = 1. However, under the assumption that an exact solution can be 
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obtained on the coarsest grid, it is often possible to show that the magnitude 
of the eigenvalues are uniformly bounded by 1 - 3 for h' > 0, where 3 > 0 
is independent of h4. If one assumes that the constant mode corresponding 

= 0 is not present, the number 1 - 3 is then given as the convergence factor. 
If the fine-grid smoother is used also on the coarse grids, the eigenvalues of 

the modified symbol M are continuous functions of h4. This means that the 
convergence rate is arbitrarily low for small values of h . The interpretation is 
that the iteration procedure is closely connected to a time-dependent differential 
equation. This was illustrated in [5] for a simple model problem. It was shown 
that for low wave numbers the two,grid procedure used plays the role of scaling 
up the time-variable, compared to what it would have been for the single-grid 
method. For first-order equations this means that the long waves move faster, 
but there is very little damping. On a finite domain fast convergence can still 
be obtained because the long waves move quickly out of the domain. The 
important fact is that both the wave propagation properties and the damping 
properties must be taken into account when constructing multigrid methods for 
first-order systems. 

In this paper we first prove that under very natural conditions multigrid meth- 
ods are consistent with a time-dependent differential equation where the time 
variable is scaled up compared to the corresponding singlegrid method. This 
was conjectured by Jesperson [11], see also [10]. However, the properties of the 
time-dependent differential equation obtained in this way can be used only for 
the smooth part of the solution. The remaining part of the discrete solution is 
completely independent of the differential equation. In our analysis we take into 
account the interaction between the two parts. We use Fourier analysis to derive 
precise results concerning the behavior of the low and the high wave number 
parts of the solution. The analysis is carried out for discretizations of general 
constant-coefficient differential equations of arbitrary order for a V-cycle on an 
arbitrary number of grids in two space dimensions. 

Based on the results of this paper, grid-independent convergence is proved 
for systems of first-order PDEs in [14]. The usefulness of Fourier analysis in 
predicting convergence rates for such problems has been demonstrated recently 
in [3]. An early and short version of this paper is [6]. 

Our approach of introducing a time-variable is only for the analysis, and 
it has been used for other iteration methods, see e.g. [4]. We emphasize that 
our aim is not to solve time-dependent problems. Attempts have been made 
to use the multigrid technique to speed up the calculation also for that kind of 
problem, see e.g. [11]. However, in that case the solution must be accurate also 
on the coarse grids. Since the fine structure in the solution can be represented 
only on the fine grids, the true time-dependent behavior can never be obtained 
on the coarser ones where larger time-steps are used. Therefore, the multigrid 
technique is useful only if the finest grid is unnecessarily fine for some reason. 

2. CONSISTENCY WITH A TIME-DEPENDENT SYSTEM 

In this section we shall prove that a full multigrid iteration is consistent with a 
time-dependent differential equation where the time-variable is scaled compared 
to the equation which corresponds to a singlegrid iteration. We begin by giving 
the notation. 
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We shall use L + 1 grids { G, }IL, where GL is the finest one. For conve- 
nience it is assumed that the stepsize h, on grid G, is equal in all directions. 
Q, is an ordinary finite difference or finite volume approximation of the linear 
differential operator 

P = EA,(x (a) .. . (A 
(2.1) PZo()( ,i io dJ 

Av E W x R, v = (vl, ..,vd), X = (X1, .,Xd)T, 

on the grid G,, 1 = 0, 1, ..., L. The matrices Av are assumed to be suffi- 
ciently smooth. We seek the solution to 

(2.2) QLU = f, 

where u and f are vector functions with s components. The restriction op- 
erator from G, to G,-I is r1, and the prolongation operator from G, - to G, 
is pl, 1 = 1, 2,..., L. On each grid G, there is an iterative method 

R,(u, f) - u, 

which is applied p times before and q times after the coarse-grid corrections. 
On the coarsest grid we use p + q iterations. The complete multigrid V-cycle 
is defined by (see [7, ?4.1]) 

procedure MG(l, u, f) 
if 1 = 0 then for j:= 1 step 1 until p+q do u :=Ro(u, f) 
else 
begin 

for j 1 step 1 until p do u R, (u, f); 
d:=r(Qlu-f); 
v 0; 
MG(l - 1, v, d); 
u U -upv; 

for j:= stepluntilq dou:=R,(u,f); 
end; 

U = un 

MG(L, u, f); 
un+1 := U; 

We write the iteration operator as 

(2.3) Rj(u, f) = Slu+ Tlf, 

where consistency requires 

(2.4) T,Ql = I-S, . 

When analyzing the error and its convergence to zero, it is sufficient to consider 
the case f = 0. Let n be the iteration index. Then the multigrid V-cycle can 
be written as, cf. [7, Lemma 7.1.4], 

M_1 = I, 

(2.5) Ml=Sl_(I p(I - Ml-l)Q r1Q1)S, 1 = 0, 1, ... , L, 

un+1 = MLnU. 
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(If the exact solution is computed on Go, then Mo = 0 in the recursion (2.5) 
for 1 > 1 .) 

From now on we use the notation u(') for a grid function defined on G,. 
Consider the time-dependent problems 

(2.6) ,9t + Qlu(l) = f(l) 1= 0, 1, ... , L, 

and introduce the time steps At1, 1 = 0, 1, ... , L. We also use the notation 

At = AtL , h = hL , al = At, Al=0, 19 ..., L. At 1 

The idea is to consider the iteration Rj(u('), f()) as one time step At, in a 
solution procedure of (2.6). If the whole multigrid cycle (2.5) is considered as 
one time step At, we want to relate it to the time-dependent problem (2.6) with 
l = L. 

When calling a function u smooth on a certain grid G,, we mean that the 
divided differences Dvuj are bounded on that grid. 

In all of the following assumptions, u denotes a smooth function, u E S, 
and g denotes a bounded function, g E B. 

Assumption 2.1 (assumptions on Qj). 
(i) Ql is consistent with P, 0 < 1 < L, i.e., 

Qlu = Pu+hlg. 

(ii) At1Qj is a bounded operator. 
If Q, is an ordinary difference operator, then the condition 2.1 (ii) implies 

(2.7) At, < const. hmax(v1+v2+ +vd) / 

(For first-order systems: At, < const. hi.) Also by (2.1), Pu is a smooth func- 
tion. 

Assumption 2.2 (assumptions on S,). 
(i) Slu = (I-At,Ql)u + Atlhlg, O < I < LL. 
(ii) S, is a bounded operator. 

Assumption 2.3. 
(i) Ql-1r,Q,Suu=v+h,Atlg, 1 < L< , where v e S. 
(ii) QT-1 r1Qj is a bounded operator. 

Assumption 2.4 (assumptions on p,, rl). 
(i) plrlu = u + hlg, 1 < L. 
(ii) p,, r1 are bounded operators. 

Theorem 2.1. If Assumptions 2.1-2.4 hold, and if the multigrid iteration (2.5) is 
considered as one time step At in a time-dependent procedure, then it is consistent 
with 

au 
~~L 

(2.8) at + (p + q) E ajPu = 0. 
1=0 

For p = 1, q = O, a, = 2L-1, 1 = 0,1, ..., L, it is consistent with 

au + (2L+1 _ I)Pu = 0. a t 
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Proof. The major part of the proof is found in Lemma A.2 of Appendix A in 
the Supplement section, where an expression for MLU is derived. In general, 
MLU cannot be expected to be smooth, since p, may be such that it returns 
a nonsmooth function, even if it is applied to a smooth one. However, the 
nonsmooth part is of 0(hAt) . 

It follows from (2.5) and Lemma A.2 that with un smooth, 

(2.9) U MLUn = (- (p + q)At L aQL Un + hAtg, 

where g is bounded. 
Consider now a smooth solution u(x, t) of the differential equation (2.8) 

substituted into the iteration formula (2.5). The truncation error T is defined 
by 

AtT(X, t) = u(x, t + At) -MLU(X, t), 

and consistency requires that T(X, t) -* 0 as At -O 0, h -, 0. We have by 
(2.9) and Assumption 2.1 (i), 

=u(x, t+ At) -u(x, t) L 
T(X, t) = At + (p + q) alQLU(x, t) -hg(x,t) 

1=0 

au ~~~~~L 
= -at (x, t) + O(At) + (p + q) E aiPu(x, t) + 0(h) - hg(x, t) 

1=0 

= O(At +h) , 

which proves the theorem. 5 

The theorem shows that on a fixed number of grids the iteration formula 
converges to the modified time-dependent equation (2.8) as At -? 0. In practice 
this means that for first-order systems we can expect the waves corresponding 
to low wave numbers to move (ZEL0 al) times faster by using the multigrid 
procedure instead of a singlegrid solver. Alternatively, we can of course consider 
the procedure as an increase in the time step for the original system (2.6), 
and this interpretation applies to all types of operators P. Note that we have 
assumed consistency also on the coarsest grid Go. The practical implication 
of this is that Go must be fine enough such that the low-frequency part of the 
solution can be represented. If there are only two points, say, in each direction 
of Go, the theorem has no meaning. This does not mean that one should avoid 
very coarse grids if the geometry of the computational domain permits it. On 
the contrary, it may accelerate the convergence as a result of stronger damping. 

Instead of (2.6) we could of course consider the more general systems 

+ -M 
aU + D C),u (1) = Di f(l ), 

where D1 are nonsingular operators. But this is just a preconditioning of the 
original system, e.g., with "local time-stepping" or residual smoothing [10], [2]. 
Let the preconditioner D1 be included in Q, everywhere, also when the residual 
is determined. Then, with minor modifications of Assumption 2.1, a theorem 
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similar to Theorem 2.1 can be proved when Q, and P are not necessarily 
difference and differential operators. 

3. FOURIER ANALYSIS OF THE MULTIGRID CYCLE 

In the previous section we have analyzed the multigrid method in a general 
case with smooth solutions by considering the multigrid procedure as an iter- 
ation forward in time (or pseudotime). In this section we present a complete 
convergence analysis, where we take also the nonsmooth part of the solution 
into account. We restrict the analysis to the constant-coefficient case in order 
to be able to use Fourier analysis as our main tool of investigation. The results 
are less general here, but more details about the convergence are revealed. For 
the sake of notational simplicity the analysis is carried out for two space di- 
mensions, but the results generalize to any finite number d of dimensions. All 
variables are associated with level 1 except when the level is explicitly written 
as a subscript or superscript on the variable. The norm in what follows is the 
Euclidean vector norm and the subordinate spectral matrix norm. 

The main result of the analysis is that two effects are responsible for the 
convergence: the amplification of the time scale for low wave number modes 
and damping of intermediate and high wave number modes. 

3.1. Fourier representation. In the analysis we need a Fourier representation 
of the solution 

r0o 0o 
u(x) = j eje ix)x() dj d2, X= (X1, x2)T, = (r1 42)T 

We are interested in the solution of the Cauchy problem at discrete points x8> 
on level 1, 

(3.1) xyv = xo + h (,v) E z xZ, Z = {the integer numbers}. 

Then u(l) (x8>) can be written 

(3.2) 
uA = 0 u() x# 

( 3.2) = j j exp(i(G j (x' + ,uh) + 42(XO2 + vh)))u(4)d~j d 2 

Replace the integral over Xl in (3.2) by 
ooJ (j+l)27r/h 27r/h 

I (4,) d4,=j I(4,) d4j = X I( + I f/hd, 
-oo jEZ j27/h jEZO 

where 
j = + j .27r/h, j e Z 9 E [0, 27r/h]. 

The integral in (3.2) over 42 is rewritten in the same manner and 42 is substi- 
tuted by 

=2 + k * 27r/h, k E Z, 2 E [O, 2r/h]. 
After simplification and introduction of 

f'4'= E exp(iX * xo)f4(4 + j 27r/h, 2 + k * 27r/h), 
k,jEZ 
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the expression for u#V is 

u= j exp(i(4'u + &v)h)fV(4') dc, 

d4' = dXl dc2, C = [O, 27r/h] x [O, 27r/hl]. 

The integral (3.3) is split once more into a sum of integrals, 

m-1 (j+1) 27X/ho m-1 27r/ho 
/ I(') dXj= =I(4I)d4= I(4,'+j.27/ho)dXl' 

j=O j27r/ho j=0 0 

where 
Xl= Xl+j*27r/ho, m =21, h = ho/m. 

With a similar treatment of the 42-variable the integral in (3.3) takes the form 

(3.4) 

U= | exp(i(4j',uh + j * 27ru/m)) 
C0 k=O j=O 

exp(i(4'vh + k * 27rv/m))W'(4l' + j * 27r/ho, 9 ' + k 27r/ho) dc". 

Henceforth, we drop the primes on 4 and iu. 
In the analysis of the multigrid iteration in one space dimension, two wave 

numbers 4 + j 27r/ho and 4 + (j + m/2) *27r/ho, j = O, 1, . . ., m/2 - 1, on 
a grid I correspond to one wave number 4 + j 27r/ho on the next coarser grid 
1- 1 [5]. In d space dimensions, 2d wave numbers on mesh 1 are reduced to 
one wave number on the next coarser grid 1 - 1 by "aliasing" in the restriction 
process. In two space dimensions it is natural to treat the wave numbers in 
groups of four. In Figure 3.1 the wave numbers in Cl are mapped on Cl11 
when we restrict a solution on grid G, to grid G1, -. In the prolongation process 
from level 1 - 1 to 1 the wave number domain Cl11 is expanded to Cl. 

2ir/b 

Cl 

27r/l,l_Cl 

C, .2 

27/U7rl12_2 27/hj-_ 27/hj 4j 

FIGURE 3.1. The definitions of the wave number domains C,, 
Cl,, and Cl-2 
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The notation is simplified if at x8> and level / we let 

e] = exp(i(4l + j 27r/ho)xlv), 
e2 = exp(i(k2 + k *27r/ho)x%2), 

Ujk = tt(4l + j * 27r/ho, 2 + k * 27r/ho). 

For wave numbers Xl such that 0 < Xl < *, where * is small and x- = ,uh, 

e= exp(il ,uh) 

has a slow variation with ,u. This is also true for e4 with X I = 27r/ho - 
0 <? <?*, 

(3.5) emlI = exp(i(4l + (m - 1) 27r/ho)1uh) = exp(-iXl,uh). 

The function em/2 with Xl small is highly oscillatory, since 

eml2 = exp(i(4l + mir/ho),uh) = exp(i l uh)(-1)'. 
The basis function e2 has the same properties. Let 

(3.6) Elk = (eJ, eJ+m/2) 0 (ek2, ek,+m/2) 0 Is E Cx x 

Ujk = j, Uk+m/2 U j+m/2,k k Uj+m/2,k+m/2" E C 

The Kronecker product is denoted by 0 and is defined in [13], and Is is the 
identity matrix of dimension s. The number of unknown variables at each grid 
point is s as defined in ?2. The array Elk in (3.6) consists of the four Fourier 
basis functions that coalesce into the basis function e)le2 on level 1 - 1. The 
Fourier coefficients associated with the wave numbers in Ejk are stored in Ujk. 

Finally, define 

Eyv = E(xuv) = (Eoo ... , Ek , ...), u = ((UOo)T, .. ., (Ujk)T, ***)T- 

The exact order of the components in E and iu will be determined later. Then 
(3.4) can be rewritten 

(3.7) ulv= j uEv ii da . 

The difference operator Q is described in ?2. Here we assume that Av in (2. 1) 
is constant. The symbol of Q is denoted by Q, and 

(3.8) Qjk(Qlh, 42h, h) = Q(('l + i * 27r/ho)h, (92 + k * 27r/ho)h, h) E Cs x Cs. 

Four of the matrices Qjk are collected in a block diagonal matrix Qjk such 
that the blocks on the diagonal correspond to the wave numbers in Ejk. Then 

create a matrix Q of dimension sm2, 

Q = diag(Qjk), Qjk E C4s x c4s, 

j=0,1, ... , m/2- 1, k = O,1, .. , m/2- 1. 

When Q operates on u,lv in (3.7), we arrive at 

(3.9) QU,V= QE,#v di = JE,wQad)f 
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We now turn to the matrix structure of the symbol of the restriction operator 
r. Assume that r can be written as 

(3.10) r=r10r205Is. 

The restriction in the xi-direction is denoted by ri in (3.10). As an example, 
take s = 1 and 

ri='El-.+ 
1 + -E,, i=1,2, 

where Ei is the shift operator in the xi-direction. Then the stencil of r in 
(3.10) is 

f T'/ 6 8 -16 

4 26 8 16 
The restriction of Ejk in (3.6) is 

(3.11) rEjk = (rnej], riej+ml2) ? (r2ek2, r2ek2+ml2) ? Is = eJekRjk, 

where 

Rjk = j, g r1 ,+m/2) (k g2r2, k+m/2) 0 Is E Cs x C4 

and 
rii = ri((j + j * 27r/ho)h) i = 1,2 

is the symbol of the one-dimensional restriction ri, and gi is a constant such 
that giej = ej+m/2. In the above example, 

rij = cos2((i + j * 2r/ho)h/2), 

(3.12) ri, j+m/2 = sin ((4 + j * 27r/ho)h/2), 

gi= 1 onameshxM = (,uh, vh). 

Collect the submatrices Rjk along the diagonal of R E CSM2/4 X CSM2 . If the 
wave numbers are ordered properly, then the conclusion from (3.1 1) is that 

r(Ejk, Ej, k+m/4 , Ej+ml4, k Ej+m/4, k+m/4) 

(ejekRjk, ei ek+ml4Rj, k+m/4 9 ej+m/4ek Rj+m/4 k 

ej+ml4ek+ml4Rj+ml4, k+m/4) 

(3.13) (Rik 0 

= Ej1 ,k+m/4 ) 

O kR+m/4+, k+m/4 

j=0, 1, ..., m/4- 1, k=O, 1, ..., m/4- 1. 

The last matrix in (3.13) is a 4s x 16s submatrix on the diagonal of R. The 
restriction of uMV in (3.7) is now 

(3.14) ruV=f rEuvitd i = J E'-1Ri d . 
Jc0~~~~~~~ 

The simple structure of R relies on the order of the wave numbers in E,>. 
Suppose that the order is the suitable one on level I- I in El -I. Then it 



482 PER LOTSTEDT AND BERTIL GUSTAFSSON 

follows from (3.13) how the wave numbers shall be grouped on level I in EMV . 
At the coarsest level / = 0, eoe02 is the only component in EOv and therefore 
always in the first position. In this way the order of the indices of El in E,V jk 
is determined recursively beginning at I = 0. The result is that the first matrix 
El in EMv at every level I > 0 has index j=k = 0. 

jk 
The structure of the symbol P of the prolongation operator p from level 

/ - 1 to level I is determined by an analysis similar to the analysis of the 
restriction. The matrices P and RT possess the same zero pattern outside the 
diagonal blocks. 

In the sequel we assume that the symbol matrix S of the smoothing operator 
S has the same block diagonal structure as the Q-matrix. This is, e.g., the case 
if we use Runge-Kutta time-stepping in the smoothing iterations as in [9]. A 
reader familiar with numerical linear algebra would call this smoothing scheme 
Richardson iteration [19]. 

The definitions and discussion concerning the two-dimensional problem in 
this subsection are easily reduced to one space dimension or extended to the 
three-dimensional case. 

3.2. Analysis of the iteration matrix. In this subsection the properties of the 
Fourier transform M of the multigrid iteration matrix M in (2.5) are derived. 
The results hold for differential equations of arbitrary order. It follows from 
(3.9) and (3.14) that 

rQuMV = I E dRQitdc . 

The successive application of operators to uMv corresponds to multiplication of 
the symbol matrices inside the integral. Hence, for the multigrid operator M 
performing one V-cycle, 

(3.15) MUMV=J EuvMii dc, 

where 

(3.16) M = Sq(I-P(I- 

cf. (2.5). The transform matrices R, Q, F, and S are defined and discussed 
in ?3.1. 

Let the superscript i on ui denote the number of the iteration as in (2.5). 
By (3.15) we find that 

(3.17) n )Wnjio 

The convergence of the iteration depends critically on the behavior of Mn . We 
analyze this matrix in the theorem of this subsection. 

First we need some additional notation and state a few assumptions. The 
symbol of the difference operator Qjk is defined in (3.8). The restriction and 
prolongation symbols are functions of 

ni tl l _L i 
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cl 

0 22/hh 

FIGURE 3.2. The definition of Cl* = D00 u D u l U Dl as a 
subset of Cl 

We are interested in the properties of certain submatrices of M. Of special 
interest are the wave numbers of modes with slow variation and the corre- 
sponding submatrix of M. On each grid these wave numbers are contained in 
Cl* defined as follows: 

Do0=D[0xD0*, 194=1=DoxD(4 , /h] 
(3.18) Do ox D0, Do1=DDxD, 

C7 =27XDo,ub4 uD0D j1 

FIGURE Cl*-Do Th deinton Dof CU Doo l D- 1UD Ia 

In order to have good resolution on the coarsest grid, we take (*ho/2r ?< 1 . In 
Figure 3.2 the definitions in (3.18) are illustrated. 

If(l ED D, then with (li = 2ir/h1 - (lj, we obtain 

exp(i(2ir/h1 - Xl )8uh,) = exp(-icXlHh1) 

as in (3.5). Hence, for a wave number s in Cl* the spatial variation is slow. 
Since g < sb/ho, there is no overlap on the coarsest mesh 

CO* c CO. 

Moreover, if (li E Dl, then Xl E D?, where 

With 

Xl 2XhlDoX = 2X/h -] Dl = (m7/h - 1)*, 27r/hol] EDo 

it follows for a difference operator, e.g., Q with its symbol Q defined in (3.8), 
that 

(Qrn-i ,k((2=r/ho x Do2h, h) = QDoih, (42 + k DI 2/ho)h, h) 
(3.19) - (-cth, (02 + k * 2/ho)h, h) = QOk(-c1i, ,2h, h). 
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The restriction and prolongation symbols have the same property. For com- 
pleteness we formulate all the assumptions we need in the Fourier analysis, 
even if some of them follow from the assumptions in ?2. Note that 

(4i + (m/2) * 27r/ho)hl = r/il +7 , i =I1 2. 

Assumption 3. 1. 

io = rio(j7il) = 1 + O(I I , 1I) for small II'iiII 
ri,m/2 = rio(?nil + 7r) = ?( I I ), I = 1,2, 

Pij has the same properties, 0 < I < L. 

This assumption concerns the behavior of the restriction and prolongation 
operators at low wave numbers with llqlll small (cf. Definition 2.1) and at 
oscillatory wave numbers 71il + r with llqilll small. This assumption is very 
natural and is satisfied in (3.12). Its counterpart for the physical variables is 
Assumption 2.4(i). The requirements on r and p with respect to the order of 
Q are derived by Fourier analysis in [8]. The low- and high-frequency order in 
the terminology of [8, equations (16), (17)] is at least 1 in the assumption. 

Assumption 3.2. 

(Qi-l)oo (Ql)OO = I+ ?(nil- 1ll), I < I < L. 

Suppose that the numerical approximation of Q is at least first-order accurate 
and that 

(Ql)oo = Q(I + O(IIql ID)), 

where Q is the symbol of Q, see (3.8). With such a Qoo the assumption is 
fulfilled. The assumption corresponds to [8, equation (31)]. 

Assumption 3.3. S1 is a block diagonal matrix as specified in ?3.1 and bounded 
uniformly when 4 E CO*. The upper left block is 

(S)oo = I - At, HI + O(Atl (At, + II?1II)), 

where HI is the leading term in 4 in the smoothing operator for small (, and 
At, is a small parameter of O(hy ), v > 1, 0 < l < L. 

The assumption is related to Assumption 2.2(i). In case we choose Runge- 
Kutta time-stepping in the smoothing iterations, then 

Qoo(chl, hl) = H1(c) + O(IIluII), 

i.e., HI is the symbol Q. It is remarked in [14] that Chebyshev iteration [15] 
has the same property. In numerical experiments in [14], GMRES [17] also 
appears to have a similar property but with At, dependent on the iteration 
number n. 

The time step At, can be regarded as a smoothly varying scaling parameter 
of the equations. With a Runge-Kutta scheme, the remainder term in (SI)oo is 
At, times the sum of the truncation error due to the discretization in space of 
O(IIqlII) at least and /JAtlH1(Hl + O(IIqlII)), where f, is a constant depending 
on the scheme. 
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Assumption 3.4. Define 

y+axm12,k+fim/2(q1i) = j, ]+am/2r2,k+m/2Xl g2 Qjka,8, 

Qjkafi = (Ql-1 )j7 (Ql) j+am/2, k+fim/2, 

j, k = 0, 1, 2, ...,m/2 - 1, < I < L, a, =O, 1, 

where gi, i = 1, 2, are defined in (3.11). For all 1, j, k, ce, and , 

IIf+am/2, k+fim/2 11 

is bounded for q, such that II7l I < 8. 
This rather technical assumption is a sufficient condition to obtain bounded 

elements in M. Note that Qjkafi may be unbounded, but fl is not. This is the 
case in the simple one-dimensional example in [5, ?5.3]. When comparing with 
the assumptions in ?2, we note that the bound in Assumption 2.3(ii) includes 
also oscillatory modes. The main result in [8] provides necessary conditions 
for the assumption to hold in a two-grid iteration. It follows already from 
Assumptions 3.1 and 3.2 that IlIf0Ill is of 0(1). 

Assumption 3.5. The wave numbers are ordered such that the first submatrix in 
E#V for each I is 

e'eo Is, E Doo, 0 

el_e 2 is, E E D?O, 
M_ 0ceD1, 

el -le _ is, E DO11, 

where the D's are defined in (3.18) and * is sufficiently small. 
The ordering of the wave numbers is chosen as above so that the mode of 

slowest variation is located in the first position of Euv. How to do this for 
4 E Doo is indicated in ?3.1, but the desired ordering can also be obtained for 
the other corners in C0 by a minor redefinition of Elk in (3.6). 

Partition M in (3.16) for 4 E Doo, llI1ll sufficiently small and 1 < I < L as 
follows: 

(3.20) M- = Moo E Cs x Cs, Mii ECs(m2)XCs(m2) 

Assumption 3.6. Ato < , IIqoll < , for some 8 > 0, when 4 E Co* defined in 
(3.18). 

The assumption restricts the size of Ato and qo = hoX on the coarsest grid. 

Assumption 3.7. HI has simple eigenvalues for II1oll < (, and HI is indepen- 
dent of /, HI = H(c)). 

The first part of the assumption is trivially true for scalar equations. If the 
same type of smoothing iteration is chosen at each level, then HI remains the 
same for each 1. 

Assumption 3.8. MII has simple eigenvalues ,uk(MII), k = 1, 2, ... 
s(m2 - 1), under Assumption 3.6 and if 8 < do, then there is an e0, eo > 0, 
such that 

Il/kl ?< 1 -< -o. 
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Two auxiliary lemmas, see Appendix B, are needed in the proof of the the- 
orem in this section. The proofs of the lemmas are simplified considerably if 
Assumptions 3.7 and 3.8 are satisfied. With the help of the theory in [12] and 
more detailed properties of S, less restrictive conditions can be derived. 

We are now ready to state the theorem giving the properties of Mn. The 
parameters aj are defined in ?2. The eigenvector matrices of H and MII are 
denoted by To and V0, respectively. 

Theorem 3.1. Let Assumptions 3.1-3.8 be satisfied. If 8 is sufficiently small, 
then the transformed multigrid iteration matrix for a V-cycle at level / after n 
iterations for 4 E CO* is 

Mn= (I - 6tH)n + O(Ato + II'ioII) O(Ato) 
O(AtoiIoIll) AI,I + O(At0IIqoII) J 

where 
l l 

3t = (p + q) Atj = (p + q)At aj . 
j=O j=0 

Alternatively, the upper left corner of Mn can be written 

Todiag({yVkn4}s=)TI;j + O(Ato + IlI1oll), 

where 

/k= (1Z- tk(H))n = IVykInexp(-in6tIm)1k(H)) + O(Ato). 

In the lower right corner of Mn we have 

iA'1II1 < ilvoil I IJ'|71II6| , 6 < 1. 

The proof of the theorem is found in Appendix B. In Theorem 3.1 we have 
investigated the behavior of M(4) when 4 E Co*. For the remaining part of 
the wave number domain C0 we merely make 

Assumption 3.9. 

Iljw(4)Il < o < 1, E Co\Co*, 0 < I < L. 

The consequences of the assumptions and the analysis in this section will be 
discussed in the next section. 

4. EXAMPLES AND DISCUSSION 

We discuss the results of the previous section and present two simple numer- 
ical illustrations in this section. 

Several conclusions can be drawn from Theorem 3.1. Partition the Fourier 
coefficients ui in the same manner as M in (3.20) for 4 E Doo, 

(4.1) U = (UT Id)T. 

The low wave number part is 

u0oo = Ui(4I, 2) E Cs, 
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and the remaining wave number components are collected in ij. Suppose that 
the conditions in the theorem are satisfied. Then by (3.17) and the theorem, 
after the nth iteration on the finest grid L, 

(4.2) u0= (I - 3tLH) uoo + O(Ato + Ilioll) I 

(4.3) n= (Mi)jnio + O(AtoIli,oII). 
The intermediate and high wave numbers in ti? are damped by a factor 0 in 
each iteration of the multigrid procedure. 

The low wave number part in (4.2) behaves as if we had applied the 
smoothing operator S to the low wave numbers only, but with "time-step" 
(p + q)AtL EJL0 aj instead of AtL (see Assumption 3.3 and Theorem 2.1). 
At the other end of the spectrum, 4 E DO U Do U Do, , the wave numbers with 
slow spatial variation behave as uoto in (4.2), whereas the remaining Fourier 
components are damped as in (4.3). If Assumption 3.9 is fulfilled, then the 
description of the evolution of the Fourier components for all wave numbers is 
complete in CO, and therefore also in CL. 

We summarize in a theorem the preceding discussion with a comparison 
between the smoothing iteration and the multigrid iteration. 

The Fourier coefficients associated with slowly varying modes, 4 E CL, after 
n iterations on grid L with only the smoothing operator S are denoted by 

(4.4) uS(4) =UL (nAtL , ), 4E CL. 
The corresponding coefficients for the multigrid iterations is UMG(c). 

Theorem 4.1. Let the sufficient conditions in Theorem 3.1 and Assumption 3.9 
be fulfilled. Assume that the Fourier symbol S of the smoothing operator satisfies 

Ils(4)| I_< 0 < 1,I E CL\CL 

and that I I u(4)II is bounded for 4 E CL. Then for E CL, 

UMG(c) = UL(n8tL, 4) + O(Ato + lIOll), 

where UL and io are defined in (4.4) and Theorem 3.1, respectively. For E 
CL\CL, 

||Us()|< | u()|, 

||n ()|< CL(4)On + ?(Att+o ) IUMG ~) I I ? I(c) 
where cL depends on &?a, and v is defined in Assumption 3.3. 

Proof. Consider the oscillatory modes, and suppose that E E CL\CQ, that there 
is a 4' in CO* and 

4. 5) (1, K) E Imm = Im X Im, Im = {O, 1, - ,m1}, 
. = ' + 27r/ho(l, K)T. 

Then by Theorem 3.1, when 4' E Doo, 

||UMG(41) = IIiUIK(41)II2 ? Z 1jk (I)1 
(j, k)EImm\ (0, 0) 

= IIin(</) 112 < c 20 nIIai0(<) 112 + O(AtoII?oII). 
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The same bound is valid in DO U DO U DO1. Since II?0(4)II is bounded for 
E E CL, there is a CL(4) such that 

(4.6) ||UMG(c) ? CL(4)6An + O(AtoIII7II)A 

In CL there is a c such that 

llqZoll < hojj4*Ij < c^At' /> 

When 4' in (4.5) fulfills 4' E CO\Co*, then by Assumption 3.9, 

IIuMG(n)II = IIn (')Ijl < E IIUkn (<:)Il < 02nIIiiO(<')II2 
(j, k)EImm 

With only smoothing iterations, we have 

11 -n (4)I = 11 |-n(4) iO(:) 11 < An ll UO(<:)11 

The results in the theorem for 4 E CL\CQ are proved. 
If 4 E CL, then 4' E CO*, and it follows from Assumption 3.3 that 

US(4)= (SL)OJ0 (N) = (I - AtLi) to(E) + O(AtL + I'lLII) UL(nAtL, n)- 
By Theorem 3.1 we obtain 

UMG(G) = (I - tLH)nu?(4) + O(Ato + IIuoII) 
= UL(n3tL, 4) + O(Ato + IIqlOII)- ? 

If we choose Runge-Kutta time-stepping, then 

(4.7) H = Qoo, 

and the slow Fourier modes are integrated at least first-order accurately in time, 
cf. Theorem 2.1, but the time step taken per multigrid iteration is so much larger 
than it is with only Runge-Kutta iteration. An interpretation of the theorem 
in this case is that time (or pseudotime) proceeds faster with the multigrid 
method. This effect is always achieved with multigrid iterations satisfying the 
assumptions. 

Let us consider two simple examples. The smoothing operator is Runge- 
Kutta time-stepping (or repeated Richardson iteration with a fixed number of 
steps) and the problem to be solved is scalar, s = 1. In the first example, the 
differential operator P is of first order, 

Au Au 
Pu = xa + aX2 

It is approximated by a first-order accurate difference expression such that 

Qoo = i(GI + c2) + O(hL) 
for small j, j = 1, 2. According to Theorem 3.1, (4.2) and (4.7), we obtain 
on the finest grid L 

(4.8) uOO = exp(-i(4I + c2)nftL)g00 + O(hL)- 

For numerical stability, AtL is of O(hL). One part of unv corresponding to 
low wave numbers is 

( no0ee2 = exp(i( I(x,v - fltL) + -2(x 2> - nftL)))U80 + O(hL), 

4 E Doo. 
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The result is similar in the other three corners of CL. The conclusion from 
(4.9) is that the smooth part of u%, is propagated a distance nftL in both 
spatial directions in n multigrid iterations. If only smoothing iterations are 
employed at level L, then the corresponding distance is nAtL, cf. Theorem 4.1. 
The improvement with multigrid iteration with the same number of smoothing 
iterations on level L is 

(4.10) (n5tL(P + q))/nAtL = j, 
j=O 

in agreement with Theorem 2.1. In [5] this factor is interpreted as an increase 
of the group speed of a plane wave. 

In the second example the differential operator is of second order, 

Pu = - ((aXI)2 + (aX2)2) 

Choose the numerical approximation to be at least first-order accurate, 

Qoo = I +2 + (hL) 

for small (j, j = 1, 2. Analogously to (4.8), we derive 

uoo = exp(-(cl + c22)nftL) 7io + O(hL)- 

Stability requirements force AtL to be of O(h2) . Here, we have only damping 
of the Fourier coefficient. Suppose that 

At, = Ahl 

where fl is a constant. Then 

aj = Atj/AtL = (hj/hL)2 = 22(L-j) 

and 
L L 4 

8tL = ZajAtL = AtO E aj/ao = Ato* -(1 -0.25L+1). 
j=O j=O 

Therefore, the damping of the mode is governed by 

exp(-(c2 + c2 )4nflh 2/3), 

essentially achieved by the coarse grid. The improvement of multigrid iterations 
over only Runge-Kutta time-stepping is also as in the first case given by Theorem 
4.1, but the convergence is becoming progressively slower as I -* 0 . 

As an illustration of the theoretical results in this paper, the eigenvalues of 
M in Theorem 3.1 are plotted for a one-dimensional example in Figure 4.1 
(next page) and three two-dimensional examples in Figure 4.2 (see p. 491). In 
Figure 4.1 the model equation to be solved is 

(4.11) UX = f 

The equation is discretized by a cell-centered finite volume scheme with ad- 
ditional 4th-order artificial viscosity, see [10]. The smoothing iteration is a 
five-stage Runge-Kutta method and At, = hl. The number of presmoothing 
steps is 1, and there are no postsmoothing iterations. 
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FIGURE 4.1. The eigenvalues )j (t) of the Fourier transform 
of the multigrid matrix M are displayed for the model equa- 
tion ux = f and a five-stage Runge-Kutta scheme on 1, 2, 
and 3 grids. On the left, J)j I is plotted, and on the right, 
Im log )1/4At1 shows the speed-up factor for lij close to 1 

The symbol of the restriction operator is 

r = cos(cthi/2), 

and p 3r 
In the left column, lI1y(M)I, j = 1, 2, ... , m - 2L, is plotted as a function 

of 1L = chL, where c e Co. Thus, 

11L e [0, 2ir/mJ. 
In the right column of Figure 4.1 the factor 

Im logij(M)/CAtL, 

0.0r f X 1.02. 3 00 .0 .0] 
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F 0ig. 4 2}a. a 1* I nr E Fi. 4.2c. a = Ib= O. lootropic artificial viscoqit .v 

1/2 q 1 1~~~~~~~~1 

F1 ix 4 291>. *a F . }t ? >ig. 4.2(1. a = .b = O. Ali:timlrop)ic ai1-tii(ial iw usit.y. 1 

FIGURE 4.2. Isolines of the maximum of lAj i5) I for each t 
of the Fourier transform of the multigrid matrix M are dis- 
played for the two-dimensional equation (4.12) and a three- 
stage Runge-Kutta scheme on 2 grids. The maximum is I in 
the corners, and less than I in the interior of the I-domain 

is displayed as a function of qL . It follows from Theorem 3.1 that this is the 
speed-up factor y = EJL. aj of the slowly varying Fourier mode with AI-l. I 

- j) 

for small 4 and e close to 27rlho. The results are in accordance with the 
theory in Theorem 3.1. There is one eigenvalue Al in each of the three cases, 
L = O, 1, 2, for which JAI I I when 

1 E [O, -*] u [27/ho - -27/ho] 

with, e.g., st* < 112ho, and when is in the neighborhood of O or 27rlho, we 
have 

y 2L+I - 
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For the other eigenvalues, 

jAj(M)j < 0 < 1, j=2,..m. 

The two-dimensional model example is 

O9u O9u 
(4.12) a Ox1 +b f= 

The equation is discretized by the same method as (4.11). The smoothing 
procedure is a five-stage Runge-Kutta scheme, the multigrid strategy is the same 
as above and there are two grids, L = 1 . 

Isolines of 
max jjM~ 

j=1 ,2,3,4 

are plotted in Figure 4.2. The distance between two lines is 0.02. In Figure 
4.2(a) and Figure 4.2(b), the coefficients in (4.12) are a = b = 1 and a = 1, 
b = 0.5, respectively. When 4 E CL (the squares in the corners of the wave 
number domain), the maximum of lAj I is close to 1 and exactly 1 at the corners. 
In the interior of CL we have 

lajl<0<1, j=1,2. 

The coefficients in (4.12) and Figure 4.2(c) are a = 1 and b = 0. We still 
have good damping properties in the interior, and maxlAjl is close to 1 in the 
corners. There are no "grid alignment" effects with no damping at all in large 
parts of the wave number domain. This is sometimes a problem with upwind 
discretizations of (4.12) [16]. The reason why the centered difference scheme is 
successful is that the artificial viscosity is isotropic and independent of a and 
b in (4.12). Similar results are obtained with a three-stage Runge-Kutta scheme 
in [6]. 

On the other hand, if we scale the artificial viscosity term in the x I -direction 
by a and in the x2-direction by b, then we have an obvious "grid alignment" 
problem as in Figure 4.2(d). The multigrid method does not reduce the ampli- 
tude of the modes with, e.g., ?11 small and ?12 . 7/2, simply because there is 
no artificial viscosity in the x2-direction. 

In [14] we use Parseval's relation for the Fourier representation in ?3.1 and 
Theorem 3.1 to derive the properties of un in the multigrid iterations. 
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